
ISSN (Online) 2278-1021 
ISSN (Print)    2319-5940 

 

IJARCCE 
 

International Journal of Advanced Research in Computer and Communication Engineering  
 

ICACTRP 2017 
 

International Conference on Advances in Computational Techniques and Research Practices  

Noida Institute of Engineering & Technology, Greater Noida 
 

Vol. 6, Special Issue 2, February 2017 

Copyright to IJARCCE                                              DOI   10.17148/IJARCCE                                                                32 

Software Production Issues: Analysis and 

Categorisation 
 

Aishwarya Vatsa
1
, Shiv Kumar

2
 

PhD Scholar, The ICFAI University, Jaipur, India1 

Assistant Professor, The ICFAI University, Jaipur, India2 

 

Abstract: Issues raised at the time of software product deployment are termed as Software Production Issues (SPI). 

They call for encountering and prospected solution because of the involved criticality. This paper presents a proposal of 

advancement towards the solution of SPI. It deals with the various aspects associated with SPI and how Quality 

Assurance Team (QA) deals with them in the context of Agile SDLC. The Agile environment in itself carries various 
tools and techniques to overcome setbacks. Nevertheless, there exist issues in the deployment phase. Aim here is to 

analyse SPI and place them in their respective category. 

  

Keywords:  SPI; Software Quality; Agile SDLC; Software Deployment. 

 

I. INTRODUCTION 

 

Software Production Issues (SPI) is the problem faced by 

the software development team during/after the 

deployment phase of a software work product. This phase 

is considered as a transition stage for the work product. 
The work product is deployed from the company‟s 

environment to the client‟s environment. This evolution of 

work product poses a handful of challenges which is dealt 

by the software development team. The challenges may 

transform to issues if left unhandled. Hence, there is a 

need for SPI management. This paper discusses the 

shortcomings identified during or after the software 

deployment phase which give rise to SPI and a proposal to 

mitigate SPI. The raised problem has been examined in the 

context of agile environment since it is a prominent 

methodology in today‟s world. Agile SDLC is an 

application for software work products which has the 
ability to change by the environment. This property of 

agile SDLC makes it suitable for products which are prone 

to changes and updates. However, a change in the context 

of research will not affect the ideology of this paper. 

Hence, there lays scope of generalisation. Before investing 

time in this idea there is a need to understand the broader 

area. Software Quality Assurance (SQA) which is the root 

of an existence of quality in software work product 

enforces QA to take various measures to produce 

qualitative software. The problem at hand is that after all 

the efforts put in by QA; still there lay scope of research. 
The prime reason behind this is SPI. 

 

A. Research Objectives and SPI Resolution 

Ideologies of the proposed research are followings: 

 Identify the current status of research and 

software production issues. 

 

 

 
 Identify SPI‟s impacts and challenges. 

 Identify implications upon QA. 

 Identify resolution approach. 

 

The above-stated objectives are prospected to minimise 

SPI. QA play a vital role in this research.  For this reason, 

QA‟s viewpoint is explored. The product development 

procedure involves various stages in agile SDLC. 

Development and QA team are responsible for different 

tasks. Loopholes identification in the adopted procedure is 

required, as it converges to issues later in the procedure. 
Hence, before finding the resolution approach for SPI, 

categorisation is required. 

 

B. Categorisation of SPI 

Software production stage in Agile SDLC is sighted to be 

most critical in nature. This stage if executed successfully 

leads to client‟s satisfaction. On the other hand, if any 

issue arises at the time of software production then it may 

hamper the software development team‟s work. 

Consequently, SPI identification and categorisation is 

required. It will ease-up the process of approach finding. 
Challenges and impacts associated with each SPI will 

further reduce the hazard.  

 

The problem here is that how to identify the SPI and put 

them in their respective categories. Issues can only be 

identified through QA‟s viewpoint. Considering the 

chosen environment of this study, Agile, the understanding 

is that QA is responsible for SPI which leaks through all 

the testing performed over the software product. Hence, 

QA‟s perspective will lead to SPI identification and 

categorisation. 



ISSN (Online) 2278-1021 
ISSN (Print)    2319-5940 

 

IJARCCE 
 

International Journal of Advanced Research in Computer and Communication Engineering  
 

ICACTRP 2017 
 

International Conference on Advances in Computational Techniques and Research Practices  

Noida Institute of Engineering & Technology, Greater Noida 
 

Vol. 6, Special Issue 2, February 2017 

Copyright to IJARCCE                                              DOI   10.17148/IJARCCE                                                                33 

Another aspect of SPI is its criticality which depends on 

the container project‟s characteristics. If the project is time 
critical, then it directly makes SPI crucial in nature. 

Hence, project and SPI‟s criticality are directly 

proportional to each other making SPI reduction a major 

„need‟ of the software industry. Product Quality, which is 

the main focus for QA team, is not the only dimension 

which gets affected due to any type of SPI. It affects the 

project as a whole. If it becomes critical enough, then it 

can bring the container project to its closure. It gives rise 

to a requirement which imply that severity of SPI must be 

known before deployment. Severity further decides the 

priority of SPI. Reason behind categorisation is to 
understand the root cause of issue origin. When the origin 

is identified then approach proposal will resolves SPI 

through its origin itself. 

This paper is prearranged in the following way. The next 

section describes related work done in the area of SPI. 

Section III explains the origination of SPI. Sections IV 

define characteristics of SPI and also place them in their 

respective categories. Section V reflects the impacts and 

challenges associated with SPI and finally Section VI 

presents the conclusion. 

 

II. RELATED WORK AND TERMINOLOGY 

 

This section discusses the relevant work done prior in this 

area. Available literatures introduce various techniques 

implemented to improve the product development 

procedure. Notable among the work done in the area of 

SPI is the study conducted by Maarit Laanti [1]. The study 

focuses primarily on the introduction of agile in large scale 

software development organisation. It establishes the fact 

that how constructive agile environment is and how it 

helps in software product development.  

 
Yongxiang Hu [2] discusses the idea of embedding testing 

at every phase of software development procedure to 

produce a work product which is error free. Software 

testing is declared as the primary technique to overcome 

defects. 

 

Mika V. Mantyla et al. [3] discusses the activities 

performed during the clean installs and updates. Further, 

the role of sanity test was studied in uncovering of bugs in 

client‟s environment. 

 
Mary Poppendieck et al. [4] discuss lean software 

development procedure. The building integrity principle if 

applied in agile software development will eliminate some 

of the production issues. In this process of lean, developer 

and customer tests are used with the same versioning, 

synchronisation and semantics. 

 

Helena Holmstrom Olsson et al. [5] conducted a study 

which reveals the barriers coming in the way of 

continuous deployment. Strategising a solution for these is 

also a part of this study. 
Alan. W. Brown et al. [6] proposed Disciplined Agile 

Delivery (DAD) framework which is composed of various 

characteristics. Many of these could help with SPI. 

Keun Soo Yim [7] proposed Composable Fault Tolerance 

(CFT) framework which implies various techniques to 

make the final product fault tolerant. 

Many frameworks and guidelines are proposed for 

overcoming SPI. However, the study conducted over these 

frameworks unfolds the fact that a general view over the 

SPI is required. The work proposed in this paper is 

different from earlier work. Difference lie in the way SPI 
is studied. A focused and isolated view in this direction is 

required.  

 

III. ORIGIN OF SPI 

 

Although the responsibility of issue reduction lay over QA 

team, nevertheless other team members also play a vital 

role in their propagation in the deployment or production 

phase. Primarily, the cause of SPI is QA team. Not 

questioning the QA team‟s capabilities, there exist certain 

areas where they lack. These areas are: 
 

A. Environmental Difference 

The environment under which testing is performed is not 

the replica of the environment under which software is 

deployed. The differences may create credibility issues 

(e.g. RAM and disk space difference, Operating system 

difference, Number of cores difference, Number of 

processors difference, Latency change, etc.). 

 

B. Regression Execution 

Every release requires execution of the regression suite 

which ensures that no existing functionality of the work 
product was hampered. However, there might be some 

edge cases which were not automated due to the 

technicality involved. These cases may create issues 

during deployment. 

 

TABLE I.  REASONS FOR NON-INCLUSION OF 

CASES  

 

S. No Rationales Description 

1 Non-

automatable 

Cases which are not 

automated due to 

technical constraint 

2 Edge Cases Cases which has minimal 

chances of occurrence 

3 Unidentified 

Cases 

Cases which remain 

unknown by the QA team 

4 Time Taking 

Cases 

Cases which takes too 

long for execution and 

verification 



ISSN (Online) 2278-1021 
ISSN (Print)    2319-5940 

 

IJARCCE 
 

International Journal of Advanced Research in Computer and Communication Engineering  
 

ICACTRP 2017 
 

International Conference on Advances in Computational Techniques and Research Practices  

Noida Institute of Engineering & Technology, Greater Noida 
 

Vol. 6, Special Issue 2, February 2017 

Copyright to IJARCCE                                              DOI   10.17148/IJARCCE                                                                34 

5 Dynamic 

Test Data 

Cases which have 

dynamic output 

6 Complex 
Flow 

Cases whose flow of 
execution is difficult to 

handle 

 

Table I. describes all the reasons which force the QA team 

in non-inclusion of test cases in the regression suite. 

 

C. Functional Cases 

Identification of functional test cases which will execute 

against any release is a difficult job. If few of the 

functionalities are not covered by the functional testing, 

then it will remain unverified till deployment which could 

produce an issue at the time of work product release. 

 
D. Minimal Time 

In Agile environment, a strict schedule is followed for 

work product release, comprising of the time spent over 

testing. It increases the chances of failure. QA team needs 

to adhere to their testing plan under any circumstances 

which will ensure that the work product holds the quality 

attribute in the production environment as well. 

 

E. Third Party Module Failure 

Application, during the time of its execution, is supported 

by various third party modules.  If any of these modules 
fail to execute, then it could affect application at runtime. 

  

F. Network Glitch 

In the QA environment, few scenarios remain untested. A 

network failure is one of them, which is an undefined 

exception affecting the work product in the production 

environment. 

 

G. Lack of Domain Knowledge 

If QA is deficient in the thorough knowledge of the 

domain on which he/she is working, then it could affect 

their testing capability. 

 

H. Miscommunication 

Agile manifesto suggests maximum communication and 

collaboration between the team members. 

Miscommunication could lead to misunderstandings 

between the team members and affect the work product in 

an undefined manner. All the above-explained points give 

rise to SPI. The discussion is valid for the generalised 

group of software development procedure. QA play a vital 

role during product deployment which is the reason that 

they need to be more focused. All the possible areas from 
where SPI could origin must be kept in control. 

 

IV. CATEGORISATION OF ISSUES 

 

Numerous frameworks, methodologies and techniques 

have been introduced and employed. As the number 

grows, there are very few of these which are indulged 

entirely in the reduction of SPI. A framework or an 
approach, which is an amalgamation of already existing 

theory, is entailed for SPI mitigation. It could be done by 

first identifying the issues and placing them in their 

respective category. The categorisation process will 

further lead to the challenges and impacts associated with 

SPI.  

SPI have two crucial characteristics. First one is its 

severity and the second one is its priority. Severity 

describes that if a particular SPI occur at the time of 

deployment, then how it will impact the container project. 

On the other hand, priority defines that how important that 
issue is during the deployment procedure. Following are 

the cases that arise due to SPI severity and priority: 

 

A. High severity and high priority 

These issues are highly catastrophic and associate 

themselves with the high priority level. They need 

immediate action and fixture. If they were not immediately 

attended, then they will impact the product as well as the 

customer.  

B. High severity and low priority 

An issue under this case impacts any specific functionality 
of the software product sternly.  However, the 

functionality of the product which gets affected is of less 

importance (for e.g. functionality which is rarely used by 

the customers). Hence, these issues have less priority over 

others. 

C. Low severity and high priority 

These are the issues which doesn‟t concern the product 

much, as they do not affect any particular functionality. 

However, they are of high priority because they need 

urgent fixture. For instance, a syntactic or semantic error 

over the homepage of a website is of high priority, but it 

doesn‟t affect the product‟s functionality.  
D. Low severity and low priority 

These are the issues which don‟t affect the functionality 

and is low on the priority level. For instance, an alignment 

issue on the least visited page of a website. 

 

Severity characteristic of SPI decides that how the product 

will get affected and how it will influence the clients and 

their respective customers. Following are its types: 

1) Critical Severity: These are the issues which 

occur in the live environment and breakdown the product. 

2) Major Severity: These issues have high impact 
factor over the product but it would not breakdown the 

product when it is live. 

3) Medium Severity: These issues are deferred for 

some time as its probability of occurrence in the live 

environment is very little. However, if it occurs, then it 

would surely breakdown the product.  

4) Minor Severity: Issues which doesn‟t impact the 

product‟s functionality and could be ignored if the priority 

of the issue is also low. 



ISSN (Online) 2278-1021 
ISSN (Print)    2319-5940 

 

IJARCCE 
 

International Journal of Advanced Research in Computer and Communication Engineering  
 

ICACTRP 2017 
 

International Conference on Advances in Computational Techniques and Research Practices  

Noida Institute of Engineering & Technology, Greater Noida 
 

Vol. 6, Special Issue 2, February 2017 

Copyright to IJARCCE                                              DOI   10.17148/IJARCCE                                                                35 

Priority characteristic of SPI is deciding factor for the 

timeline of issue fix. Following priority levels has been 
recognised: 

1) High-Level Priority: Issues mentioned in high 

priority zone needs immediate fixture before entering into 

another stage 

2) Medium-Level Priority: Issues mentioned in 

medium priority zone does not need urgent fixture. They 

are delayed for two to three sprints (in any agile 

environment). 

3) Low-Level Priority: Issues mentioned in low 

priority zone does not need fixing as it has minimum 

chances of occurrence.  
Fig. 1 consists of all the possible categories of SPI. All 

these categories are further bifurcated in its consequent 

subcategories. Following are the types of SPI:  

 

A. Functional SPI 

An Issue arising due to the functionalities of any software 

product are termed as functional SPI. In this category, 

issue occurring due to the difference between actual and 

expected outputs of test cases were included.  

 

 
Fig. 1. SPI Categories 

 

Below are the functional SPI types: 

1) Sunny Day Cases: These are the cases which 
impact the application functionalities directly. These cases 

are easy to replicate and test. The QA team is expected to 

follow the procedure of replication and removal of the 

SPI. For instance, a booking cancellation test case for 

ticket booking application is easy to replicate and test. 

2) Rainy Day Cases: These are the cases which are 

not easy to replicate and brings the QA team in a doubtful 
situation. They are not much likely to occur, for instance, 

the database server goes down while booking a ticket on a 

ticket booking website.  

3) Boundary Cases: These are the cases where some 

variables of any work product have a boundary value 

resolution problem. For instance, if a user on a ticket 

booking website can book the ticket for the next 60 days, 

then the case of the sixtieth day lays on the boundary, and 

need specialised handling. 

 

B. Legacy SPI 
Legacy SPI is the carry over issues in any software 

product. In agile SDLC, issues get carried over from one 

sprint to another. Their existence in the software work 

product does not affect the deployment procedure. 

Following are the types of legacy SPI: 

1) Low Priority Issues: These are the issues which 

do not necessarily need fixing as it does not harm the 

software product.  

2) Performance Issues: All the performance issues 

related to the software work product does not require 

removal. These issues do not harm the software product. 
For instance, higher load in the production environment 

than expected load is a performance issue, but the load 

factor will not affect the software work product 

functionality. 

3) Unidentified Issues: These are the issues which 

came into the picture after incremental deployment. They 

do not impact the software work product. 

 

C. Performance SPI 

These are the issues which affect the performance of the 

software work product in the production environment. 

There are various factors which give rise to this SPI. 
Following are their explanation: 
 

1) Memory Issues: In the production environment, 

the load on the software product increases continuously.  

Primary memory (RAM) of the server plays a significant 

role in such scenario as it directly impacts the performance 

of software product. 

2) High Load: High load value may harm the 

response time of customers. If the load on the software is 

not supported, then it could transform the state of the 

software and make it unresponsive. 

3) CPU Utilisation: Under normal circumstances, 

high CPU utilisation is favoured. However, If the 

utilisation threshold of CPU is reached then, it may 
breakdown. This scenario needs to be avoided. 

4) Connection Leak: The software product connects 

to various external modules in live environment. The 

numbers of connections have a minimum and maximum 

doorsill. If the connection violates these levels, then 

performance could be affected. If more than maximum 



ISSN (Online) 2278-1021 
ISSN (Print)    2319-5940 

 

IJARCCE 
 

International Journal of Advanced Research in Computer and Communication Engineering  
 

ICACTRP 2017 
 

International Conference on Advances in Computational Techniques and Research Practices  

Noida Institute of Engineering & Technology, Greater Noida 
 

Vol. 6, Special Issue 2, February 2017 

Copyright to IJARCCE                                              DOI   10.17148/IJARCCE                                                                36 

connections allowed are established then, the software 

product will exhaust in the production environment.  
5) Third Party Modules: External Modules 

connected to the software may have degraded performance 

numbers which will further propagate the issue in the 

software work product. 

 

D. Environmental SPI 

Any software product in agile SDLC is developed, tested 

and then deployed. In the deployment phase, the product is 

supposed to deploy in development, QA and production 

environment. All these environments have different 

variables. When the software is deployed, these variables 
should have correct values. Slight variation in these values 

could create an issue at the time of deployment. 

 

E. Network SPI 

Software product in production environment gets requests 

and responses over the network. They also connect to 

third-party module over the network. Network SPI are the 

one which affects the software product over the network 

connection. Following are the types of network SPI: 

1) Network Glitch: At times network can face some 

malfunctioning. For instance, a number of requests paused 
for some period and outburst of the paused requests at the 

same time resulting in request-spike. 

2) Network Failure: Huge loss is expected if the 

network crashes which could impact customer and 

software product as well. 

  

F. Deployment SPI 

Software deployment is a complicated procedure. Various 

issues can occur at the time of deployment in the 

production environment. The deployment SPI is the issue 

which occurs due to some incorrect steps taken during the 

deployment process. Following are the types of 
deployment SPI: 

1) Erroneous Deployment Instruction: Deployment 

procedure is conducted by Dev ops team, who follow the 

deployment instruction, step by step. If there is any error 

in these steps or some instructions are missing, then 

deployment can be unsuccessful. 

2) Properties Value Mismatch: If there is any 

mismatch in the application properties value, then it can 

cause an error at the time of start-up. 

 

G. Cosmetic SPI 
Cosmetic SPI is the issue which affect the layout or 

interface of the software product. If any software product 

has a dedicated GUI, then there arise chances that it could 

have minor cosmetic issues, which are raised by the 

customers. 

 

H. Failover SPI 

These are the issues which occur due to the dependency 

between primary and secondary external modules. The 

software product is supported by multiple instances of 

external modules. For instance, the primary database is 
supported by the secondary database, which is meant for 

failover cases. If the primary database goes down then, 

software product should switch to secondary database in 

minimal time duration to reduce the impact of the failure. 

The failover cases needs handling at the product‟s code 

level. 

Above described are the variously identified categories of 

SPI. These issues could become severe if not handled at 

the earliest. The severity could affect the software product 

at critical times.  

 

V. IMPACTS AND CHALLENGES OF SPI 

 

As discussed in the previous section, the severity of SPI 

decides that how it is going to affect the functionality of 

any software product.  However, there are various 

dimensions of SPI‟s impact in any IT organisation. 

Following are the experienced dimensions: 

1) Product Quality: Quality is the most important 

property of any product which is hampered by SPI, 

severely.  

2) Client‟s Satisfaction: If issues propagate in any 
product then it could further lead to failure or unacceptable 

behaviour. 

3) Client and their customer‟s relation: IT 

company‟s clients may be further associated with their 

own customers. If the product is encumbered by SPI, then 

it would also impact clients‟ reputation. 

4) Company‟s Goodwill: If the company loses any 

of their clients due to SPI then it will impact their goodwill 

in the market. 

5) Rework: Huge amount of rework is required if 

any product is brought back to desk due to any issue in the 

production environment. 
All these impacts pose assorted challenges associated with 

the software product and SPI. Primary challenge is to 

overcome all the types of SPI and control them at the time 

of their origin. 

 

VI. CONCLUSION 

 

Software Production Issues is discussed to its core in the 

above sections, which is the first step towards an approach 

introduction for SPI mitigation. The introduced categories 

are defined purposefully and impact associated with SPI 
has been identified. It is the proposal of SPI categories 

which will further give way to motivated research in this 

particular direction. It was important to understand the 

vitality of SPI and how it affects various IT projects. All 

the categories, their priority and severity characteristics, 

will place them in an appropriate amount of light. It will 

help in understanding that how solution will be presented 

for this problem. To avoid SPI in the software product, a 

revised approach is required. The well-defined categories 



ISSN (Online) 2278-1021 
ISSN (Print)    2319-5940 

 

IJARCCE 
 

International Journal of Advanced Research in Computer and Communication Engineering  
 

ICACTRP 2017 
 

International Conference on Advances in Computational Techniques and Research Practices  

Noida Institute of Engineering & Technology, Greater Noida 
 

Vol. 6, Special Issue 2, February 2017 

Copyright to IJARCCE                                              DOI   10.17148/IJARCCE                                                                37 

and their respective derivation is the first step towards this 

approach. 
Software Production is a multifaceted area. It involves 

various transitions, configuration changes, customers‟ 

involvement and product integration. SPI exposure will 

address the problems associated with all these areas. In 

this paper only a single aspect of SPI is covered. 

Ideologies presented at the beginning of this paper are not 

covered to its entirety. Tedious work will unfold the 

implications on QA and present an approach which will 

help in resolvng Software Producton Issues. 

 

REFERENCES 

 
[1] M. Laanti, Implementing Program Model with Agile Principles in a 

Large Software Development Organisation, Annual IEEE 

International Computer Software and Applications Conference, 

2008, pp. 1383-1391.  

[2] Y. Hu, The Application and Research of Software Testing on Agile 

software development, International Conference on E-Business and 

E-Government (IEEE), 2010, pp. 5540-5542 

[3] M. V. Mäntylä and J. Vanhanen, “Software Deployment Activities 

and Challenges –A Case Study of Four Software Product 

Companies”, 15th European Conference on Software Maintenance 

and Reengineering (IEEE), 2011, pp. 131-139. 

[4] M. Poppendieck and M. A. Cusumano, “Lean Software 

Development: A Tutorial”, IEEE Software, 2012, pp. 26-32. 

[5] H. H. Olsson, H. Alahyari and J. Bosch, “Climbing the “Stairway to 

Heaven””, 38th Euromicro Conference on Software Engineering 

and Advanced Applications (IEEE), 2012, pp. 392-399. 

[6] A. W. Brown, S. Ambler and W. Royce, “Agility at Scale: 

Economic Governance, Measured Improvement, and Disciplined 

Delivery”, ICSE (IEEE), 2013, pp. 873-881. 

[7] K. S. Yim, Norming to Performing: Failure Analysis and 

Deployment Automation of Big Data Software Developed by 

Highly Iterative Models, 25th International Symposium on 

Software Reliability Engineering (IEEE), 2014, pp. 144-155. 

[8] A. Vatsa and S. Kumar, “Software Production Issues and 

Mitigation Techniques: A review”, IJRRA, Vol. 3, Issue 2, June 

2016, pp. 6-9. 

[9] N. D. Fogelström, T. Gorschek, M. Svahnberg, and P. Olsson, “The 

Impact of Agile Principles on Market-Driven Software Product 

Development”, Journal of Software Maintenance and Evolution: 

Research and Practice, 2010, Vol: 22, pp. 53-80. 

[10] I. Ruiz-Rube, J. M. Dodero and R. Colomo-Palacios, “A framework 

for software process deployment and evaluation”, Information and 

Software Technology (Elsevier), 2015, pp. 205-221. 

[11] X. Zhao, X. Xuan, A. Wangy , D. Liuz and L. Zhengz, “Software 

Quality Control via Exit Criteria Methodology: An Industrial 

Experience Report”, 21st Asia-Pacific Software Engineering 

Conference (IEEE), 2014, pp. 23-26. 

[12] T. Kanij, R. Merkel and J. Grundy, “An Empirical Study to Review 

and Revise Job Responsibilities of Software Testers”, IEEE 

Symposium on Visual Languages and Human-Centric Computing 

(VL/HCC), 2014, pp. 89-92. 

[13] E. Collins, A. Dias-Neto and V. F. de Lucena Jr, “Strategies for 

Agile Software Testing Automation: An Industrial Experience”, 

36th International Conference on Computer Software and 

Applications Workshops (IEEE), 2012, pp. 440-445. 

[14] D. Marijan, Multi-Perspective Regression Test Prioritization for 

Time-constrained Environments, International Conference on 

Software Quality, Reliability and Security (IEEE), 2015, pp. 157-

162. 

[15] G. Schermann, J. Cito, P. Leitner, and H. C. Gall, “Towards Quality 

Gates in Continuous Delivery and Deployment”, ICPC (IEEE), 

2016, pp. 1-4. 

[16] A. Mattila, T. Lehtonen, H. Terho, T. Mikkonen and K. Systa, 

“Mashing Up Software Issue Management, Development, and 

Usage Data”, IEEE/ACM 2nd International Workshop on Rapid 

Continuous Software Engineering, 2015, pp 26-29. 

[17] X. Su, H. Liu, Z. Wu, D. Zuo and X. Yang, “SA Based Software 

Deployment Reliability Estimation: Problem Space, Challenges and 

Strategies”, International Conference on Educational and 

Information Technology (IEEE), 2010, pp. V2130-V2135. 

[18] N. Rathod and A. Surve, “Test Orchestration”, International 

Conference on Pervasive Computing, IEEE, 2015.  

[19] S. Jansen and S. Brinkkemper, “Definition and Validation of the 

Key process of Release, Delivery and Deployment for Product 

Software Vendors: turning the ugly duckling into a swan”, 22nd 

IEEE International Conference on Software Maintenance, 2006. 

ICSM'06, 2006, pp. 166-175.  

[20] E. Dolstra, E. Visser and M. de Jonge, "Imposing a Memory 

Management Discipline on Software Deployment", ICSE'04: 

Proceedings of the 26th International Conference on Software 

Engineering, 2004, pp. 583-592.  

[21] G. G. Claps, R. B. Svensson and A. Aurum, “On the journey to 

continuous deployment: Technical and social challenges along the 

way”, Information and Software Technology 57 (Elsevier), 2015, 

pp. 21-31. 


